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ABSTRACT

Avian influenza is caused by influenza virus type A, which is called H5N1. In 2004, an
epidemic was recognized as the first time in Thailand. After that, there were the reports of the
sporadic outbreaks in all regions. This disease can be transmitted to human by birds. Human
can be infected by direct contact from infectious animals by touching the phlegm or biological
fluid contact with the feces of infectious animals. In this study, we take into account the age
structure of avian influenza patients. We separated the population into two groups such as
human and birds. Age structure of human population is separated into two classes; juvenile and
adult human. The equations are constructed for each class. Standard dynamical modeling
method is used for analyzing the behaviors of solutions. The stability conditions for the disease
free equilibrium state and disease endemic equilibrium states are determined. The basic
reproductive number is found. The numerical solutions are shown for supporting the theoretical
results and we analyze method for controlling the transmission of avian influenza. The results
of this study suggest the way for reducing the outbreak of this disease.

Keywords: Basis Reproductive Numbers, Disease Free Steady State, Endemic Steady State,
Stability.

INTRODUCTION

Avian influenza is caused by influenza virus type A, which is called H5N1. Avian influenza is
an infectious disease of birds (especially water fowl such as ducks and birds), virus can spread
to domestic poultry and cause large-scale outbreaks of serious diseases. Some of these HSN1
viruses have also been reported to cross the species barrier and cause disease or subclinical
infections in humans and other mammals. Viruses are separated into 2 groups based on their
abilities to cause disease in poultry: high pathogenicity or low pathogenicity. Highly
pathogenic viruses result in high death rates (up to 100% mortality within 48 hours) for some
poultry species. Low pathogencity viruses also cause outbreaks in poultry but they are not
generally associated with severe disease (World Health Organization, 2011). First infected
humans were reported in 1997 during a poultry outbreak in Hong Kong SAR (World Health
Organization, 2012), China. Since its widespread re-emergence in 2003 and 2004, this avian
virus has spread from Asia to Europe and Africa. It has become entrenched in poultry in some
countries, resulting in millions of poultry infections, several hundred human cases, and many
human die from this disease. Outbreaks in poultry have seriously impacted livelihoods, the
economy and international trade in affected countries. From the above mentioned, we need to
find the way for reducing the outbreak of Avian Influenza. The data of patients collected from
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Figl. The data of Thai influenza cases of Thailand. There is no data in year 2007

In 2008, Mohamed and Abdesslam (Mohamed, D., & Abdesslam, B., 2008) studied the
dynamics of human who be infected by avian influenza, they presented a mathematical model
and show the stability analysis and simulations with the different parameters. In 201, chong
Tchuenche and Smith (Nyuk Sian Chong, Jean Michel Tchuenche, & Robert J. Smith, 2013)

studied the half-saturated incidence rate % The parameter p>o is the transmission rate and

H is the half-saturation constant, i.e., the density of infected individuals in the population that
yields 50 % possibility of contracting avian influenza. In this paper, we studied the transmission
of Avian influenza virus by formulating the mathematical model of avian influenza for bird
and human populations. The two steady states are obtained, conditions for stabilities of disease
free and endemic steady states were investigated and showed in the form of basis reproductive
numbers. The mathematical solutions are shown to support the theoretical solutions.

FORMULATION OF THE MODEL

In this study, we consider the transmission of avian influenza. For bird, we separate into three
types: susceptible, exposed and infected groups. For human, we divide into 8 groups;
susceptible, exposed, infected, recovered juvenile humans, susceptible, exposed, infected and
recovered adult humans.

The transmission diagrams of bird and human populations are shown in fig.2.
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We define the variables and parameters in the model as follows:

s,y IS the number of susceptible birds at time t,
is the number of exposed birds at time t,

is the number of infected birds at time t,

is the number of susceptible juvenile human at time t,
is the number of exposed juvenile human at time t,
is the number of infected juvenile human at time t,
is the number of recovered juvenile human at time t,
is the number of susceptible adult human at time t,
is the number of exposed adult human at time t,

is the number of infected adult human at time t,

is the number of recovered adult human at time t.

The dynamical equations are described as follows:

Bird population

‘%:E—Bbsblb—absb (1.1)
dd%:[gbsblb —(Fo +db)E, (12)
di:lébEb—(&b +dv)l, (13)

dt

Human population

By, (o d)s, (1.4)
St -(F +urd)E, (1.5)
o FE, (e, + v+, (1.6)
Bl - )R, (1.7)
B —h2-puS,l, + (14,5, (1.8)
d('iA —BoaSaly + HE, — (Fy +0,)E, (1.9)
%ZMIJ+FAEA—(YA+WA+dA)lA (1.10)
Ry _\R, +7,1, —d,R, (1.11)

dt
where the parameters are defined in tablel.

Table 1. The definitions of parameters for our model
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Symbol Description

B bird inflow

do Natural death rate of birds

ab death rate due to avian strain in birds

By rate at which susceptible bird change to be exposed bird

Fo incubation rate of avian influenza in birds

hi juvenile human recruitment rate

Beo transmission rate of avian influenza from birds to juvenile human population
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F incubation rate of avian influenza in juvenile human population
v, recovery rate of juvenile human

v, death rate due to avian strain in juvenile human

d, Natural death rate of juvenile human

B rate at which juvenile change to be adult human population

h2 adult human recruitment rate

Bon transmission rate of avian influenza from birds to adult human population
Fa incubation rate of avian influenza in adult human population

Ta recovery rate of adult human

Va death rate due to avian strain in adult human

dy Natural death rate of adult human

ANALYSIS OF THE MATHEMATICAL MODEL
Equilibrium Points

Setting (1.1)-(1.11) to zero, then the equilibrium points are given by:

i) The disease free state: El:(an,o, h 40,0802+ (+h2k o o

T N C R

ii) The endemic disease state: g, - s, ,.1;,S.EL I, R',S5, Ex [ R
s, - _B_

Byl, +db
. By,
. _ Pl

(Fo +db)(Byl, +db)
- _ BFs dy
b (Hb +|Eb)(ab +an) Bb
s _ _n

Boly +(u+d,))
EJ* _ hleJIb**

(FJ +P-+dJ)(BbJIh +H+d.1)
N _ hlﬁbJFJIb* .
! (m+y,+y, +d)(F +p+d)(Byl, +p+d;)
RJ* _ hanJFJYJIb*

(P’+dJ)(“+YJ+\VJ+dJ)(FJ+u+dJ)(Bleb*+H+dJ)
. hlp +h2(B,,1, +up+d,)
Boals +da) Byl +n+d))
Ih*( h1B,,m + Boa (hlp+h2(d, +B*h.]|b* + H)))
d,+F+p d, +Baly
(da +F)(; +Byly +1)

FA[ hip,pl, +Bml;(hlwhzgﬁbjlb*+u+dj>)j *
F+u+d, Boaly +d, " h1B,,Ful,
Fatds (nty,+y, +d))(F +p+d,)
(Ya+Wa+d)(Byl, +0+d))
FA[ Byl +ﬁm'f(hmm{(ﬁmlb*+u+dj))] )
R F+p+d, Boaly +da N h1By,Ful,
RS = g[ ity +h2(By 1y +p-+d,) j+Y7A Fa+d, (v, v, +d)(F +prd)
Ao { Boaly +da)Byly +p+d;)

da (Ya+Wa+d)Byl, +u+d,)
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Local Stability

The local stability of equilibrium point is determined by the sign of eigenvalues for each
equilibrium state. If signs of the real parts all equilibrium points are negative, then that
equilibrium point will be locally asymptotically stable.

Let g =(S,.E,.I;.S,E}I},R;. S, Ex IRy T R, <1the disease free statee, is globally asymptotically
stable in
hl h2

©=1(S,,Ey 15,S,,E; 015, R, Sa En 10 RA) €0 N, SE,NJ <— N, <=
do d.l dA .

Let E,=(.E,I;S,.E.IIR,S,EnILRy If R >1the endemic diseases statee, is locally
asymptotically stable in

0=1(S,,E,,1,,S,,E;, 1,,R;,Sp,Enr 14 R €0 1N, S,E,NJ SE,NA SE
do d.‘ dA .

i) Disease free state El:(EE'O'O'd hL_ o0,0,802+(+N2u o4 o) the characteristic equation is
b

) +u da(d; +1)
[9e, =y =0
or
(B, * 1, +d, + 1) 0 0 0 0 0 0 0 0 0 P *Ss
Bos * 1 —(dy + Fy +p1) 0 0 0 0 0 0 0 0 Pu*S,

0 F, @y +y, +d,+u) 0 0 0 0 0 0 0 0

0 0 7 ~(d, + ) 0 0 0 0 0 0 0

“ 0 0 0 (B *1,+d,) 0 0 0 0 0 —Bon* S

0 “ 0 0 Bon* 1, —(d,+F,) 0 0 0 0 Bon*Su|=0

0 0 u 0 0 Fy  —(a+dy+y,) O 0 0 0

0 0 0 " 0 0 Ta —d, 0 0 0

0 0 0 0 0 0 0 0 —f,*S,—ds 0 —B*S,

0 0 0 0 0 0 0 0 Bp*S,  —Fo-ds  B,*S,

0 0 0 0 0 0 0 0 0 B —a-dh
Then the characteristic polynomial of the above Jacobian matrix is

oo B - B

(=) (mpa =) (= —F) (A=, (o ~Fo) =)= ) ~Fo(-B, ~ L)l —ya — Wi, —1, -, = 0(3.1)

ds
The eigenvalues are given by
M=l =-pu-d hy=—d, —-F A =-pu—d, R A =—d, =y, —ya A =—p—d, v, —y,

The remaining eigenvalues are the solutions of

(—x_ab_ﬁ.,)(_x_ab_ab)(_x_ab_%)_ﬁ(_gﬁb_%) - 0
or W +AAT+AL+A, =0 (3.2)
where

A1:3Hb +Fo -+ +BTBb (32&)

b
A, =3&§+28blzb+23h&b +Foou +2§Eb+8%7b[3b (32b)
b
A3 _ ai (ab +|Eb)(ab +&b) gﬁ(&ﬁ + (ab +|En)ab)Bb (330)
b

We determine the conditions of,x,,2,2,4,and ,to have negative real part by using Routh-
Hurwitz criteria (Leah, E.K. ,1998).

detH, =A >0 (3.3)
detH, =A,A,~A ;>0 (3.4)
detH, =A,A,A,-As*>0 (3.5

Condition (3.3) is always true because all terms in (3.2a) are positive.
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Fig.3 The parameter spaces for the disease-free equilibrium point which satisfy the

Routh-Hurwitz criteria (3.4)-(3.5). The values of parameters are
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i) Endemic disease state g, = (s;,E;.I;.S;.E;.I},R;,S,,Ex I, R, , the characteristic equation is

(B, +d, +p) -2 0 0 0 0 0 0 0 0 0 —PwS,
B, —(dy, + Fy +p) -2 0 0 0 0 0 0 0 0 B,
0 F, Oy +yy +dy ) -2 0 0 0 0 0 0 0 0
0 0 ” —(d, + 1) 2 0 0 0 0 0 0 0
u 0 0 0 ~(Boudy +d,)— 2 0 0 0 0 0 ~PunSa (3 . 6)
0 “ 0 0 NS —(d,+F,) -2 0 0 0 0 PuSa |=0
0 0 u 0 0 F, —(p+dy -4 O 0 0 0
0 0 0 u 0 0 Tn —d, -4 0 0 0
0 0 0 0 0 0 0 0 -B,S,~dv-2 0 -5S,
0 0 0 0 0 0 0 0 7S, Fo-dy -1 7S,
0 0 0 0 0 0 0 0 0 Fo —as —dv -4
BF, d Bd, Fop Bd,F B
-3 —=2= —2— = = —
(-da =M)(da —Fa =2)(-dpy = (=——= Y —fb)ﬁm—)\')(db +0b Fo+0o 0o +doFooy ————2 2P P00 Py
(do +Fo)(ds +aw) By (db +Fo)(do +on)  (do +Fo)(db +atn)
. e — . o o
Bdy Fo o3, BFy awf, 2Bds Fo B, A BFy B,A BFs o B, A

2l 0 P RR R O 2duA? —Fed? — okl -
(dn+Fb)(db+(xb) (dn+Fb)(db+0Lb) (dn+Fb)(db+0cb) (dn+Fb)(db+(xb) (db+Fb)(db+0Lb)

L BRBAT e (ed - hop)(d - (BPOaye ) d e
(ab+lzb)(ab+&b) ) (d; A —p)(-d, - F -2 —p)(-d, ((ab+'*:b)(ab+ab) Bb)BbJ A—p)(-dy—ya—rA—y))(d, -y, - A—p—y,)

M=—Oy Ay =—dy—Fy s Ay =—0y —Va—Wa, by =—0,—p, A =—0, —F -, As =—d, -y, —p—y,

ho—d . BPBy By
! T (do+Fo)(ds+ow) By

», have negative real parts when
azﬁbj < _ E'Ebﬁm _
By ’ (db + Fo)(db + o)

ho=—d — E'EbﬁbA + abBbA
8 — a i - 3 — o
(db + Fo)(db + o) By

), have negative real parts when

ah,BbA <d +— Erzb%”“ —
By * (dv +Fo)(ds + o)

n

+

The remaining eigenvalues are the solutions of

o, o __ o o
ab3+ab2?h +Hb2&b +dsFoot ——= ng F,bBb —_——— B,de’Lsz —_——— Bd,be(,Xbﬁ'L R BEh U',bﬁb, — ZB,deEB"}L
(do +Fp)(do + )  (do+Fo)(do+ow) (do+Fo)(db+ow) (do+Fo)(do+aw) (do+Fo)(ds + o)
— 2= —_— - = B B B —-— =,
L %Fb Eb)\' o BEbabJ?’bxi —Zdblz—Fbkz—abkz—%—},z _ 0
(db+Fb)(db +ou,) (dh+Fb)(dh +(xb) (db+Fb)(db+0Lu)
or M+AM +AL+A, =0
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BFsf,
(Hh +|Eu)(ah +&h)
_ 2BduFeB, . BFs B, . BF:f,
2 (ab +|Eb)(ab +&b) (ab +|Eb)(ab +&b) (ab +|Eb)(ab +&b)
A, = —d (ab +|Eb)(ab +&b) +§|EbBb

A, =2dy +Fo +a +

We can see that »,,%,.2,,%,.%, 2,2, and 2, have negative real parts. We use Routh-Hurwitz criteria

detH, =A >0 (3.7)
detH, =A,A,-A ,>0 (3.8)
detH, =A,A,A,-As*>0 (3.9

Condition (3.7) is always true because all terms are positive.

detH,
detH

A, A,
Fig4. The parameter spaces for the endemic equilibrium point which satisfy the Routh-

Hurwitz criteria. The values of the parameter are B=2,000 , ds :% ,Fo :%, By = 2020§00 Lo =4

Numerical Results

The value of parameters in our model

Description Parameter | Sample Values
Natural death rate of birds d 0.005 per day
death rate due to avian strain in birds | o 5 per day
rate at which susceptible bird By 0.000002 per day
incubation rate of avian influenza in | F 0.142857 per day
birds
Disease free
bird inflow IE | 1,000 per day
Endemic
bird inflow IE [ 2,000 per day
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Fig 5. Numerical solutions of our model for r, <1 the parameters are
B =1000,ds = 0.005, & = 5,8, =0.000002,F» =0.142857 and R, = 0.0422871

2052
; 74928
1050
SJ 2048 E, 742
2045 74824 >
10es 7491
2042 74220
T Tsm 1000 5o 200 T 500 1000 1500 2000
Time (day)
Time (day)
45140
147482 5120
147491 46 100
- 46 080
IJ 147400 R-T 45050
147458 800
45020
T 00 1000 1500 2000 3500 000 4000 6000 BOGO 10000
Time (day) Time (day)
140 15.0838
3133 150836
130 15.0834
5125 . .
S'—\ . 5 E N 15.0832 s
° o - 15.0830
’:115 15.0828
5110 15.0826
P
0 1o00 1300 2000 500 1000 1500 2000 25(
Time (day) Time (day)
573 .
5730 285 000
5720 280 000
728 . 5000
| e R 270 000
A 5127 A N
e 65 000
260 000
725
o 5 000
0 500 1000 1500 20000 40000 GOOOO 50000
Time (day) Time (day)
162208
162205 2543
162204 2540
162203
E, . S
S 162202 2935
b 182201 1930
182200 -
0 500 1000 1500 2000 1500 3000 3500 T 500 1000 1500 2000
Time (day) Time (day)
2940
I 2933
b e ————
2930
2925
500 1000 1500
Time (day)

Fig.6 Numerical solutions of our model, for r, ~1the parameters are
B =2000, B, =0.000025,d5 = 0.005, 0 =4, F» =0.4 AN R, =6.4881
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DISCUSSION AND CONLUSION

In this study, we constructed the mathematical model of avian influenza. The model equation

is constructed for each human class. Standard dynamical modeling method is used for
analyzing the behaviors of solution. The basic reproductive number is defined by Ro where

_ BFou 3,

o Hb(ab +|Eh)(ab +&b) )
For r, <1the disease-free equilibrium state is stable and the endemic equilibrium is stable where
R, >1
From Fig.4, we can see that the solutions approach to the disease equilibrium state
E, =(12516,0,0,0,313893,0,0,0,200000,0,0) where R, <1
Fig.5 Time series solutions of susceptible, exposed, infected and recovered juvenile population
and susceptible exposed infected and recovered adult population, susceptible, exposed and
infected birds, wherer, <1
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Fig.7 Bifurcation diagram of the solution of equation (1.1)-(1.11) the parameters are
B =2000,d, =0.005,F, =0.4,, =4

The bifurcation diagrams of equation (1.1)-(1.11) are shown in fig.6. We can see that when
R, <1, E,Will be stable and forr, >1, €, will be stable. If the reproductive number is greater than

one, the normalized susceptible exposed, infected, recovered populations, susceptible exposed
infected, recovered adult humans. From the mathematical model of the avian influenza,
controlling the epidemic model is effective and practical for the application of Mathematical
to show numerical results of the mathematical model in accordance with the conditions of the
outbreak and epidemic disease under the conditions without chronic conditions which could
control the outbreak.
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